

6.270 Lecture 4
Localization/Navigation

Scott Bezek
January 2011

Corrections/Notes

● “8-hole pulley” → “6-hole pulley”
● Dual differential: should have mentioned that it's

weaker than a standard differential drive since
single motor provides all of the torque driving
forward or backward rather than two motors

Putting things together

● Yesterday, we saw how to drive in a certain
direction

● In order to drive somewhere, must know where
we are first (localization)

● Also want high level control of robot: should be
able to say moveToPoint(x,y) (navigation
system)

Localization

● Difficult to navigate unless you know where you
are at all times

● Tough problem:
● Sensors noisy
● Small errors can lead to large problems:

– A few degrees of error can lead to 1ft of inaccuracy if you
drive across the board

A peek at localization...

● Dead reckoning: Estimate your own position based on
previous estimated position and amount of change

● How?

● Encoder – distance
● Gyro – direction
● Distance sensors?
● Accelerometer?

● Why?

● VPS updates infrequently
● VPS updates are old (latency)
● VPS heading isn't extremely accurate

A peek at localization...

● We want to update our estimated position: x
and y

● At each time step: (pseudocode)
● dist = encoder_read(ENC_PORT) * CONV_FACTOR
● encoder_reset(ENC_PORT)
● x = x + dist*cos(theta) //use old heading
● y = y + dist*sin(theta)
● theta = gyro_get_degrees() % 360 //update cur heading

Better localization possible?

● It doesn't make sense to just ignore the VPS

● Best of both worlds?

● Dead reckoning:

● Accurate short-term; fast updates
● Relative changes
● Reliable, smooth data (but drifts)

● VPS:

● Accurate long-term (no drifting)
● Absolute positioning
● Potential outages, dropped packets, jitter

How does VPS work?

● Fiducial pattern on top of your robot
● Camera mounted above playing

field that tracks these patterns
● Wirelessly transmits your location to

your robot

Use VPS data too...

● Let's add some code to handle the VPS too
● When a VPS update arrives:

● x = vps_data.x
● y = vps_data.y

● This would mean VPS data is 100% trusted,
since it overwrites our dead reckoning
estimated position...

Merge VPS data w/ dead reckoning

● One idea: weight VPS data and combine with
existing dead-reckoning data

● When a VPS update arrives:
● //calculate a confidence weight
● confidence = (255 – abs(motor_vel)) / 255.0
● x = confidence*vps_data.x + (1-confidence)*x
● y = confidence*vps_data.y + (1-confidence)*y

● Better, but what about latency?

Dealing with latency

● VPS data is inherently old – when it says “you
are at (x,y)” think of it as actually saying “300ms
ago you were at (x,y)”

● If we store history of distance travelled and
rotation amount (from dead-reckoning), can
reconstruct path taken since VPS snapshot

● Apply this path to the VPS snapshot data to get
an accurate estimate of where we are now

Keeping path history

● Store a history of dead-reckoning updates (ring buffer)

● At each time step:
● dist = encoder_read(ENC_PORT)*CONV_FACTOR
● encoder_reset(ENC_PORT)
● x = x + dist*cos(theta)
● y = y + dist*sin(theta)
● newTheta = gyro_get_degrees() % 360
● dTheta = newTheta – theta
● theta = newTheta
● add_to_history(dist, dTheta, current_time())

Path History Example

dist dTheta time

4 30 1000

7 0 1051

2 -12 1103

4 -12 1157

6 -110 1202

Applying path history

● Given the VPS x,y,theta, apply path history to
get a more accurate estimate of current location

● Pseudocode:
● Let data_time = time that the VPS snapshot

represents = vps_data.timestamp - 300ms
● Look in path history to find first entry newer than

data_time
● Apply distance and dTheta to current location

estimate
● Repeat previous step until at end of history

A peek at localization...

● When a VPS update arrives:
● //calculate a confidence “weight”
● confidence = (255 – abs(motor_vel)) / 255.0
● data_time = vps_data.timestamp – 300 //300ms latency
● dx_since_data = get_total_dx_since(data_time)
● dy_since_data = get_total_dy_since(data_time)
● vps_x = vps_data.x + dx_since_data
● vps_y = vps_data.y + dy_since_data
● x = confidence*vps_x + (1-confidence)*x
● y = confidence*vps_y + (1-confidence)*y

Basic Localization

● Just created basic sensor fusion localization
code!

● Could get more advanced (e.g. Kalman filters)

● Now that we know where we are, let's go
somewhere!

Let's build a nav subsystem!

● Goal: package navigation/locomotion into self-
contained system

● Navigation should run in the background (use
threading) so that high level code doesn't need
to worry about PID updates or dead-reckoning
at all

● Abstraction!

What should it do?
● High-level functions to drive around:

● moveToPoint(x, y , fwd_speed, tolerance)
● turnToHeading(heading, ang_speed, tolerance)
● turnToPoint(x, y, ang_speed, tolerance)
● moveStraight(fwd_speed)
● StopMoving()
● isMoving()

● Keep track of state of navigation system:

● MOVING_TO_POINT
● TURNING_TO_HEADING
● MOVING STRAIGHT
● STOPPED

Why is this nice?

● Clean, easy-to-read code – drive in a square:
● moveToPoint(0,0, VEL, TOL)
● while (isMoving()); //loop until stopped
● moveToPoint(100,0, VEL, TOL)
● while (isMoving());
● moveToPoint(100,100, VEL, TOL)
● while (isMoving());
● moveToPoint(0, 100, VEL, TOL)
● while (isMoving());
● moveToPoint(0,0, VEL, TOL)

Start from the bottom

● At the lowest level, we need to set left/right
motor velocities

● We would rather set forward/angular velocities
– then we can have a rotation PID controller
and a proportional forward velocity controller

● For moveToPoint(), we'll use both rotationPID
and forward controller simultaneously

● For turnToPoint(), we'll only use rotationPID

Setting up a nav system

● Imagine we have some “global” nav system
state:
● Float goalX
● Float goalY
● Float goalTheta
● Int goalFVel
● Int goalAVel
● Int state = STOPPED

Setting up a nav system

● Then high-level functions are simple – just need to set state variables for
background navigation system to read

● Void moveToPoint(x, y, fVel, tolerance)
● GoalX = x
● GoalY = y
● GoalVel = fVel
● GoalTolerance = tolerance
● State = MOVING_TO_POINT

● Void turnToHeading(heading, aVel, tolerance)
● GoalTheta = heading
● GoalVel = aVel
● GoalTolerance = tolerance
● State = TURNING_TO_HEADING

● Void turnToPoint(x, y, aVel, tolerance)
● heading = atan2(currentY - y, currentX – x)
● turnToHeading(heading, aVel, tolerance)

The Navigation Process
● Main navigation loop (runs in background):

● while(true){
– getLocation() //dead-reckoning and VPS
– If (state == TURN_TO_HEADING)

● desiredHeading = goalHeading
– else

● desiredHeading = … //use trigonometry based on goalX, goalY...
– setRotationPIDGoal(desiredHeading);
– UpdateRotationPID(); //sets desiredAVel
– If (state == MOVE_TO_POINT)

● DesiredFVel = … //proportional to distance to goalX,goalY
– Else

● DesiredFVel = 0
– LeftVel = desiredFVel + desiredAVel
– RightVel = desiredFVel – desiredAVel
– motor_set_vel(0, LeftVel)
– motor_set_vel(1, RightVel)
– If (state == MOVE_TO_POINT && distToGoal() < GoalTolerance)

● State == STOPPED
– If (state == TURN_TO_HEADING && headingError() < GoalTolerance)

● State == STOPPED
● }

Minor details

● Add locks to avoid race conditions
● If heading error too large, perhaps limit forward

velocity until pointed in the right direction

Upcoming Events

● No big events today - work on your robots!
● Lecture tomorrow: Designing for Failure – 11am
● Control Systems workshop tomorrow at 3pm –

have your robot ready to drive
● HappyBoards are just about ready

