6.270 Lecture 3 Control Systems

Scott Bezek January 2011

What we saw yesterday...

- Drive "straight":
 - int umain() {
 - while(1) {
 - if (gyro_get_degrees() > 45) {
 - motor_set_vel(0, 150);
 - motor_set_vel(1, 50);
 - } else {

}

}

- motor_set_vel(0, 50);
- motor_set_vel(1, 150);

//loop forever

We can do better than that

- With binary feedback:
 - Oversteering
 - Jerky
 - Not how you would drive a car
- What if we adjust based on amount of error?
 - Larger error \rightarrow larger adjustment
 - Proportional Control!

Proportional Control

Proportional Control

- Let's write a proportional controller!
- Demo!

Proportional Control

#include <joyos.h>

```
//returns a bounded velocity
int16 t limitVel(float vel){
 if (vel < 0) return 0:
 if (vel > 255) return 255;
 return (int16 t)vel;
int umain(){
 int16 t forwardVel = 150;
 float desiredHeading = 45.0;
 while(true){ //loop forever
  float gain = frob read range(5, 50)/10.0; //gain is configured by frob knob
  float error = desiredHeading - gyro_get_degrees(); //calculate heading error
  //Use heading error and gain to calculate motor velocities
  float leftVel = forwardVel - error * gain;
  float rightVel = forwardVel + error * gain;
  motor set vel(0, limitVel(leftVel ));
  motor set vel(1, limitVel(rightVel));
 return 0:
int usetup(){
 gyro init (11, 1400000, 500L);
 return 0;
```

Some notes about the gyro

- gyro_get_degrees() gives absolute heading with reference to starting position
- i.e. if you rotate CCW twice, gyro_get_degrees() returns 720
- Probably want helper function to calculate heading error better
 - e.g. take heading mod 360
 - e.g. error should never be > 180 or < -180
- Calibrate it before using!

Calibrating the gyro

- Change Makefile: USERSRC = user/gyrotest/umain.c
- "make clean"
- "make program"
- Set robot on spinny chair (make sure it's parallel to the ground)
- Unplug USB cable, reboot HappyBoard, press Go
- Spin chair 10 revolutions at a moderate speed
- Plug in USB cable and open serial terminal
- Should see "theta = 3723" for example
- Divide by 3600 and multiply by LSB_US_PER_DEG to get new value for LSB_US_PER_DEG
- Update user/gyrotest/umain.c, reprogram HappyBoard, repeat should get theta closer to 3600 this time

Problems with Proportional Control

- Bias never reach desired value
- Oscillations

PID Control

- Proportional
 - Handles majority of correction
- Integral
 - Adjusts output based on magnitude and duration of error
 - Can reduce bias
- Derivative
 - Adjusts output based on rate of change of error
 - Slows down controller output changes
 - Can reduce amount of overshooting

Tuning PID Controller

- More complicated than proportional: 3 parameters
- See

http://en.wikipedia.org/wiki/PID_controller#Loop _tuning for several tuning methods

Some ideas for driving

- Consider using multiple controllers
 - Heading controller (rotational velocity)
 - Distance controller (forward velocity)
- Update the desired heading as you drive
 - This will be covered tomorrow
- Can robot drive backwards? → maximum heading error is 90 degrees

Upcoming Events

- Another soldering workshop @ 3pm (if you missed yesterday's)
- Part 2 of C Crash Course HappyBoard-specific and advanced topics (threading, etc) @ 7pm
- Localization and Navigation Lecture: tomorrow @ 11am

- Lab is open work on your robots!
- Make sure your development environment is set up we have rental HappyBoards in lab – see a TA