
  

6.270 Lecture 2
A basic robot

Scott Bezek
January 2011



  

● Thanks for your patience and help during parts 
sorting!

● Still have some parts to distribute – look out for 
emails today

● HappyBoard Status
● Control Systems workshop moved to Friday
● Rules of lab



  

Overview

● Today:
● Gearing/Bracing
● Driving
● Sensing/feedback
● Basic software

● Later this week:
● Control
● Localization
● Navigation
● Fault tolerance



  

Gearing

● Doubly support shafts
● Start with a gear ratio between 50:1 and 125:1



  

Bracing

● Use perpendicular beams for strength 
● Must survive 3 foot drop test



  

Driving - Steering

● Steering wheel + Drive wheel
● Great for cars: only need one 

engine
● Pros: easy to drive straight
● Cons: wide turns, hard to 

navigate (parallel parking!), 
must move forward or 
backward to rotate



  

Driving - Differential

● Two independent drive wheels + 
free wheel or skid

● Most common for robots
● Pros: simple, rotate in place, 

easy control system
● Cons: hard to drive straight, still 

kind of hard to navigate



  

Driving – Dual Differential

● Like differential drive, but separates drive motor from 
rotation motor using gearing

● Pros: Fixes issue of driving straight

● Cons: inefficient frictional losses from many gears, 
somewhat complex

Photos from http://groups.csail.mit.edu/drl/courses/cs54-2001s/dualdiff.html



  

Driving - Synchro

● 3 drive+steering wheels
● Wheels steer in sync when 

driving straight
● Pros: No need to turn before 

translating
● Cons: Complex LEGO 

structure – leads to tall 
awkwardly balanced robot



  

Driving - Omnidirectional

● Drive wheels have embedded smaller wheels 
that allow for sideways movement

● Pros: can translate and rotate simultaneously, 
easy control system

● Cons: impractical to build with LEGO
● http://www.youtube.com/watch?

v=NPGeqwEW8Mo



  

Driving

● Questions?

● Mount motors and build chassis by Friday, in 
time for the Control Systems Workshop



  

Basic Software

● Let's make the robot move...
● Start simple:
● Turn on a motor

● int umain(){
●     motor_set_vel(0, 150); 
● }



  

Basic Software 2

● Turn on motor for 3 seconds
● int umain(){
●     motor_set_vel(0, 150);
●     pause(3000);
●     motor_set_vel(0, 0);
● }



  

Basic Software 3

● Basic control loop: read sensors, act, repeat
● int umain() {
●     while(1) { //loop forever
●         if (digital_read(0) == true) {
●             motor_set_vel(0, 0);
●         } else {
●             motor_set_vel(0, 150);
●         }
●     }
● }



  

Basic Software 4

● Drive “straight”:

● int umain() {
●     while(1) { //loop forever
●         if (gyro_get_degrees() > 45) {
●             motor_set_vel(0, 150);
●             motor_set_vel(1, 50);
●         } else {
●             motor_set_vel(0, 50);
●             motor_set_vel(1, 150);
●         }
●     }
● }



  

Hardware Toolbox

● Output:
● High speed motors
● Servos

● Input:
● A whole bunch of standard sensors:

– Switches
– Encoders
– Gyro
– Distance

● Buy your own sensors!



  

High speed motors

● Need to gear down to 
reduce speed and 
increase torque

● Gear ratios between 
75:1 and 125:1 work 
well

● motor_set_vel(PORT, VELOCITY)
● VELOCITY = -256 to 255

● Quick changes may cause brownout



  

Servo Motors

● Limited range of motion: +/- 90 
degrees
● Can be modified for continuous 

rotation

● “black box”: tell servo to rotate to 
specified position

● Useful for arms, lifts, platforms
● servo_set_pos(PORT, 

POSITION) 
● POSITION = 0 to 511



  

Digital Inputs

● Two possible values – on or off
● Provide 1 bit of information (0/1)
● HappyBoard has 8 digital inputs, WITH 

PULLUP RESISTORS
● Read value with digital_read(PORT) → 0 or 1

Either on or off, like a light switch



  

Analog Inputs

● Continuous voltage range (0-5V)
● Infinite intermediate voltages, so must be 

quantized
● HappyBoard has 10-bit ADCs, so voltages from 

0-5V map to values 0-1023
● 16 analog inputs, with pullups
● Read value with analog_read(PORT) → 0 to 

1023



  

Encoder (Digital)

● HappyBoard has 4 “Encoder” inputs

● Specialized digital input

● Designed to count the # of transitions (from 0→1) 
extremely quickly (no need to continuously poll the 
input)

● Useful for counting rotations of an axle at high speed

● Read the count with encoder_read(PORT) → 0 to 
65535

● Reset with encoder_reset(PORT)



  

Switch

● Simplest digital sensor
● SPDT – connect with COM/NC, or COM/NO, 

but NOT NC/NO
● Often used for collision detection
● Other uses: lift switch, object detection 

(breakbeam perhaps better)



  

Optical Encoder/Breakbeam

● Connect to encoder inputs to count how many 
times IR beam is disrupted (broken)

● Use with 8-hole pulley to count axle revolutions
● Place “high” on the gear train for highest 

resolution
● Encoder on free wheel vs. drive wheel



  



  

IR LED/Phototransistor pair

● Essentially a “big” version of the 
encoder/breakbeam sensor

● Decent range (~12in)
● Can be used for object detection

● Set up beam across area of interest (e.g. inside 
claw)

● Or, check for IR reflections from nearby objects

● Analog signal from phototransistor, but 
generally set a threshold in software to make it 
digital



  

IR Distance Sensor

● Range: 6in to 3ft
● Nonlinear response – requires calibration for 

accurate distance measurement
● Useful for detecting things around the robot
● Must cut trace on HappyBoard



  

Gyroscope

● Provides single-axis angular velocity

● Built-in functions to integrate to get angle (theta)

● Must be calibrated

● Accuracy: +/- 5 deg. over 2 minutes

● Error compounded by integration, builds up over time

● Be wary of spinning too fast (e.g. hitting walls hard) – can 
saturate voltage, causing angle to be thrown off

● Any slight tilt changes perceived rate-of-rotation

● gyro_get_degrees()



  

Upcoming Events

● Soldering Workshop: 3pm in lab
● C Crash Couse Part 1: 7pm in 34-101

● Mock Competition 1 coming up next Monday!



  

Appendix: Disconnecting
pullup resistors

Bottom of HappyBoard

Analog, pin 8
Slice this trace to 
disconnect pin 8 
pullup


