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Overview
 
By now, you should already be familiar with control systems – feedback, proportional/PID controls 
etc. Equipped with that, we now wish to actually get the robot somewhere. In terms of navigation, we 
ultimately would want to command the robot say, “moveToPoint(x, y)”. But before we can do that, we 
must first be able to know where the robot is. This is the topic of localization.
 
 

Localization
 
To achieve the goal of navigation, we need to be able know where the robot is in an environment at 
any given point in time, as accurately as possible. This is no easy task, but luckily for you guys, there is a 
reliable visual positioning system, or VPS, readily available. There is also the rather traditional method of 
dead-reckoning. In past 6.270 competitions (say, at least before 2010), most of it was done entirely by 
dead-reckoning, or by more tedious methods such as line following1 and wall aligning2.
 
Dead-reckoning
 
The Sensors
 
In the 6.270 kits, gyroscopes can determine heading, while a Lego pulley wheel and a breakbeam sensor 
arranged as below can function as a shaft encoder to determine distance travelled.

Placing one shaft encoder on each wheel and taking the average can theoretically give you the distance 
travelled by the robot. However, drive wheels may slip, which may lead to inaccurate deducing of 
distance. A solution around this is to use free wheels, located at the center of rotation of the robot. 
These should be as friction free as possible, so that no slipping occurs. (On a sidenote, even if you don’t 
use encoders for localization, they could also be useful in collision checking, so it could be a good idea to 
think about that.)

1 Navigating by following a line on the ground. Sensors such as the IR-LED/Phototransistor can be used 
to detect the line.
2 Navigating by moving along a wall, much like how you would get to the other side of a dark room.



Dead-Reckoning
 
By knowing distance travelled and heading direction, the simplest method that can be employed is 
dead-reckoning. Suppose we know that we start off at the point (x, y). Consider the following
 

d = encoder_read(ENC_PORT) * CONV_FACTOR;
encoder_reset(ENC_PORT);
pos_x = pos_x + d * cos(theta); //use old heading
pos_y = pos_y + d * sin(theta);
theta = gyro_get_degrees() % 360;  //update current heading

 

 
By applying this every iteration, we can inductively estimate our current location. Since sensors are local, 
this method gives faster updates and relatively smoother and more accurate short-term estimations 
compared to those obtained using the VPS. However, one obvious problem with this method is that 
errors will accumulate and sensors will drift, thereby causing increasingly inaccurate results in the 
long run. In the appendix I talk about how dead-reckoning and the global positioning system can be 
combined to give better approximations in noisy environments.
 
VPS
 
For 6.270, we have a global positioning system, which in our case is a vision positioning system. Each 
robot will have a fiducial pattern placed above that an overhead camera can track at constant intervals. 
The VPS determines the positions of the robots, and transmits that data wirelessly to the robots. The 
update frequency is around 17 times per second, so usually there aren’t any issues of latency. The VPS 



data packet will also contain necessary gaming information in the future. 

How to use it
 
The Code
 
The following sets up the necessary variables.
Add the following before usetup (e.g. in definitions):

extern volatile uint8_t robot_id;
Add the following inside usetup:

robot_id = ***your team number***;
 
To get the newest data at any point (if it exists), call the following:
copy_objects();
 
The 'game.coords’' array will contain the most up-to-date position information (from the most recent 
call to copy_objects).  Your robot's information is at index 0:

game.coords[0].x
game.coords[0].y
game.coords[0].theta

 
You can find out when the data was received by looking at

position_microtime[0]
You can subtract this value from get_time_us() to find out how many microseconds ago the data was 
received.
 
The Data
 
The x, y, and theta values are all signed integers that range from -2048 to 2047.  (0,0) is the middle 
of the playing field area. A theta value of 0 points along the positive x axis and positive theta goes 
counterclockwise (like a standard coordinate system).
 
To convert from the VPS units to the corresponding proper units (assume feet for coordinates, and 
degrees for theta) you would need appropriate conversion factors. For angles, the conversion would be

deg_angle = vps_angle / 2047 * 180.



While for distances, it depends on the dimensions of the playing field. Say, if the field stretches LxL feet, 
then the conversion would be

ft_coord = vps_coord / 2047 * (L / 2).
Since the field length may change from mock competition to the actual playing field, it is a good idea to 
define the conversion factors as constants so that they are easily updated. For example, if L = 6, then
#define VPS_PER_FOOT = 682.6666;
so that 

ft_coord = vps_coord * VPS_PER_FOOT.
 

One final and important thing to note is that the VPS coordinates data give you the coordinates of the 
point A in the above diagram, when in reality you wish to know the coordinates of point B. This isn’t 
such a difficult problem to solve though. Suppose we know that the height of the camera is H and the 
height of our robot is h, then basic geometry gives us 

real_coord = (H - h) / H * vps_coord

 
Navigation
 
Now that we know where the robot is, navigation isn’t such a difficult problem anymore. Let’s think 
about what sort of functions and variables we will need to navigate our robot. In coding a main idea is 
abstraction, so I will try to talk a bit about the different levels of abstraction.
 
A Brief Note on Bottom-up/Top-down Design
 
There are generally two kinds of programming styles, the bottom-up approach and top-down approach. 
In the former, individual functions or modules are created from the basic level and linked together to 
form higher level functions. The top-down approach is just the opposite, where higher level functions 
are programmed first, with functions that will be needed supposed, then conquered inductively down 
the levels.
 
In 6.270, holistically, the approach is more often bottom-up, as we figure out the different levels of our 
system progressively - say, from control to navigation to task-solving to gameplay etc. The idea is that 
once a lower level function is written, it acts as a black box that higher level functions call. For the time 



being though, we are dealing with a specific subsystem, it kind of helps to think in a top-down way, as 
we now see.
 
Navigation Subsystem
 
So we want to build a navigation subsystem. Ultimately, we want a function that says something like 
moveToPoint(desired_point, velocity). What functions will we need to accomplish something like this? 
In the simplest form, the robot will first need to rotate to the right direction, then drive straight until it 
arrives at the desired point, at which it stops.
 
- float determineHeading(current_point, desired_point)
- void rotateToHeading(float desired_heading) //rotate to heading
- void moveStraight(desired_heading, velocity) //PID controller
- float distanceTo(current_point, desired_point)
- void brake()
- void update() //update current position
 
It also helps to keep track of states in gameplay, so we might also want boolean (stored as ints in C) 
“state variables” such as rotation_state, moving_state, etc.
 
So our moveToPoint function could roughly look something like (in semi-pseudocode)
 
moveToPoint(desired_point, velocity) {

update();
desired_heading = determineHeading(current_point, desired_point);
rotateToHeading(desired_heading);
 
while(distanceTo(current_point, desired_point) < TOLERANCE) {

moveStraight(desired_heading, velocity);
}

 
brake();

}
 
Now let’s consider the functions we used. Things like determineHeading and distanceTo are basic math, 
so no subfunctions are needed. rotateToHeading and moveStraight were discussed in control systems, 
where we had subfunctions like setVelocity(velocity) and limitVelocity(). For simplicity, let’s assume a 
proportional controller
 
int motor_left_vel, motor_right_vel;
moveStraight(desired_heading, velocity) {



 
update();
moving_state = 1;
motor_left_vel += FACTOR * delta_heading; 
motor_right_vel -= FACTOR * delta_heading;
setMotorVelocity(motor_left_vel, motor_right_vel);
 

}
 
where setMotorVelocity does what the name suggests. Such a hierarchical build-up shows the different 
levels of abstraction in this subsystem. Later on, when it comes to gameplay, abstraction becomes 
increasingly more important and hopefully clearer.
 
Tidbits
 
The idea of using states can also be applied to using threads, so that the robot has a separate thread for 
navigation. My team did not employ such a method, but the example given the 2012 lecture notes does. 
Feel free to check that out if you are considering using threads.
 
In the long run, flexibility is a pretty important issue to think about. So it helps to think about how you 
might use your navigation subsystem in your hierarchical program so that you can code accordingly. 
In particular, the navigation system should be able to incorporate collision checking and timeout 
mechanisms.
 

Conclusion
 
So that’s pretty much about it for localization and navigation. Hopefully at this point, with some work 
you can be able to program your robot to do some basic navigation. Be warned though that calibration 
may take a chunk of time.
 
I included some random tips below just in case anyone would be interested. I also included an appendix 
containing some material on more general localization methods. It was taught last year, but with the 
robust VPS not much of it was applicable. Nonetheless, I found the material pretty cool, and in fact met 
a lot of the ideas in classes and projects later, so thought I should discuss a bit about it.



Appendix
 
The VPS system we currently have is reliable enough for our purposes, and is generally the way to go for 
localization for 6.270. However, in “real-life”, positioning systems most likely aren’t so reliable - there 
is generally a fair degree of latency and noise in the data received. Data received may jitter and packets 
may be dropped. For example, think about the GPS when you drive the car or use the phone. In these 
cases, we need other methods to arrive at better estimations of position.
 
Merging VPS with Dead-reckoning
 
So how can we combine these two methods so that we can arrive at better approximations? The main 
two issues we have with the VPS data are potential jitters and latency. While dead-reckoning does a 
good job in short-term approximations.
 
For potential jitters, a possible idea is to think in terms of confidence. It would be reasonable to say that 
the faster the robot is going, the more likely the data we receive could jitter and be not so accurate. 
Thus, we could define a confidence factor based on velocity. For example, if (x, y) is currently based on 
dead-reckoning, we could update it by

confidence = (255 – abs(motor_vel)) / 255.0;
x = confidence * vps_data.x + (1 - confidence) * x;
y = confidence * vps_data.y + (1 - confidence) * y;

to put VPS into consideration.
 
However, this method still does not solve the problem of latency. By latency we mean that the data we 
receive at a given point in time corresponds to the state of the robot a certain time point beforehand. 
If say the VPS has a latency of 300ms and we receive VPS data giving us coordinates (x, y), then it is 
actually telling us that 300ms ago the robot was at (x, y). 
 
With a relatively accurate point to start with 300ms ago, and with dead-reckoning relatively accurate 
in short periods, it makes sense to apply dead-reckoning to the VPS data to approximate the current 
position better. In order to do this, we would need to keep track of the path history of the robot. That 
way, each time we receive new VPS data, we can recreate our path from the time the data actually 
represents and obtain a closer approximation of our current location. An example combining this 
method and the confidence factor idea is illustrated below.
 

confidence = (255 – abs(motor_vel)) / 255.0
data_time = vps_data.timestamp – 300  // 300ms latency
dx_since_data = get_total_dx_since(data_time)
dy_since_data = get_total_dy_since(data_time)

// dead-reckoning
vps_x = vps_data.x + dx_since_data



vps_y = vps_data.y + dy_since_data
x = confidence*vps_x + (1-confidence)*x
y = confidence*vps_y + (1-confidence)*y
 

The ideas mentioned above are just a glimpse of what you might see in real-life engineering situations 
which I found pretty cool. There are of course many other ways to consider this problem, each with their 
own advantages and disadvantages.
 


