Control Systems

6.270
January 2013
Pointer review

• Variable: uint8_t var = 8;
• Pointer: uint8_t *ptr;
• Address-of: ptr = &var;
• Dereference: printf(“Var is: %d\n”, *ptr);
• Dereference and change: *ptr++;
One way to drive forwards...

```c
int usetup() { //set up our robot
gyro_init(11, 1400000, 1000); //start the gyroscope
    return 0;
}

int umain() { //main program
    while (1) { //do this over and over
        float deg = gyro_get_degrees(); //what angle are we facing?
        if (deg < 0) {
            motor_set_vel(0, 40); //turn left if we are to the right
            motor_set_vel(1, 90);
        } else {
            motor_set_vel(0, 90); //turn right if we are to the left
            motor_set_vel(1, 40);
        }
    }
    return 0;
}
```
We can do better than that

• With binary feedback:
 • Oversteering
 • Jerky
 • Not how you would drive a car

• What if we adjust based on amount of error?
 • Larger error → larger adjustment
 • Proportional Control!
Proportional Control
Proportional Control

• Let's write a proportional controller!
• Demo!
Some notes about the gyro

- gyro_get_degrees() gives absolute heading with reference to starting position
- i.e. if you rotate CCW twice, gyro_get_degrees() returns 720
- Probably want helper function to calculate heading error better
 - e.g. take heading mod 360
 - e.g. error should never be > 180 or < -180
- Calibrate it before using!
Problems with Proportional Control

- Bias – never reach desired value
- Oscillations
PID Control

- Proportional
 - Handles majority of correction

- Integral
 - Adjusts output based on magnitude and duration of error
 - Can reduce bias

- Derivative
 - Adjusts output based on rate of change of error
 - Slows down controller output changes (damping)
 - Can reduce amount of overshooting
Tuning PID Controller

- More complicated than proportional: 3 parameters
- See http://en.wikipedia.org/wiki/PID_controller#Loop_tuning for several tuning methods
Some ideas for driving

- Consider using multiple controllers
 - Heading controller (rotational velocity)
 - Distance controller (forward velocity)
- Update the desired heading as you drive
 - This will be covered tomorrow
- Can robot drive backwards? → maximum heading error is 90 degrees