Overview of Lecture

- Feed Forward Open Loop Controller
 - Pros and Cons
- Bang-Bang Closed Loop Controller
- Intro to PID Closed Loop Control
 - Proportional Control
 - Proportional-Integral Control
 - Proportional-Derivative Control
 - Proportional-Integral-Derivative Control
- Personal Tips and Suggestions
Feed Forward / Open Loop Controller

Examples

- Room Lightswitch
- Water Faucet
- Time Based Toaster

Robot Examples

- Set Stock Servo Motor Position
- Setting PWM on motor
Feed Forward / Open Loop Controller

- Given a reference input, multiply it by a gain, K.
- Apply controller output to robot

\[r(t) \rightarrow K \rightarrow u(t) \rightarrow \text{Robot} \rightarrow y(t) \]

- $r(t) -$ Reference Input (e.g., Voltage, Desired Angle/Speed)
- $K -$ Gain (Some Units)
- $u(t) -$ Controller Output
- $y(t) -$ Plant Output (e.g., Actual Angle/Speed)

\[\text{Given a reference input, multiply it by a gain, } K. \]
\[\text{Apply controller output to robot} \]
Feed Forward / Open Loop Controller

Pros:
- Simple to Implement
- If everything is known, controller can be reliable

Cons:
- Robot does not know if the desired output is reached
- Not robust under variable loading
Bang-Bang Closed Loop Controller

- Example: Thermostat (ON until warm temperature is reached)
- Sensor Information Dictates Action
- Not good for navigation

\[u(t) \rightarrow \text{Is There yet?} \rightarrow u(t) \rightarrow \text{Output} \rightarrow y(t) \]

\[r(t) \rightarrow \text{Sensor} \rightarrow u(t) \]

\[u(t) \rightarrow \text{On/OFF} \]
Closed Loop Control: Proportional Controller

\[e(t) = r(t) - y(t) \]

- Use sensor information to dictate action
- Use negative feedback to minimize error \(e(t) \)
Suppose we want a robot to turn to a particular angle

\[r(t) = \theta_{desired} \]

\[y(t) = \theta_{actual} \]

\[e(t) = \theta_{desired} - \theta_{actual} \]

\[u(t) = k(\theta_{desired} - \theta_{actual}) \]
Proportional Controller Example

- Remember, we are trying to minimize $e(t)$. Suppose $k = 10$
- As error increases, $u(t)$ puts more effort to achieve desired angle
- As error decreases, $u(t)$ puts less effort to achieve desired angle

$$e(t) = \theta_{\text{desired}} - \theta_{\text{actual}} \quad u(t) = k(\theta_{\text{desired}} - \theta_{\text{actual}})$$

$$e = (0 - \pi/4) \quad u = 10(-\pi/4) \quad u = 10(-\pi/6)$$
Issues with Proportional Controller

- Tuning the gain K:
 - We want high K to reach desired output but…
 - K can’t be too “stiff” (Overshoots like an undamped spring)
 - K can’t be too “soft” (K is too small to move the robot)
- Thus, desired output is never reached

$$u(t) = k(\theta_{desired} - \theta_{actual})$$

$$u(t) = k\Delta x$$

Looks like Hooke’s Law…
Proportional-Integral (PI) Controller

- **“Integral” Essential Concept:** Accumulate all error and get rid of it
- Add a integral term to get rid of error

\[
u(t) = k_p e(t) + k_i \int e(t)\]

Diagram:
- Input: \(r(t) \)
- Error: \(e(t) \)
- Integral term: \(k_i \int e(t) \)
- Output: \(y(t) \)
- Robot
- Sensor

Diagram notes:
- The integral term accumulates the error over time.
- The output is the sum of the proportional term and the integral term.
PI Controller Example

- “Integral” Essential Concept: Accumulate all error and get rid of it
- Integral will accumulate both positive and negative error
 - This slowly disappears given appropriate values of k_i

$$u(t) = k_p e(t) + k_i \int e(t)$$
PI Controller Issue

- Integral term can **wind up** forever.
- Suppose robot wants to reach a certain desired angle, but something is blocking it.
 - What happens to integral term? How might you solve this?

\[u(t) = k_p e(t) + k_i \int e(t) \]
Proportional-Derivative (PD) Controller

- **Derivative** Essential Concept: If controller didn’t change fast enough, apply some extra effort.
- Add a derivative term to act as a damper.

Mathematical Expression:

\[u(t) = k_p e(t) + k_d \frac{d}{dt} e(t) \]
Suppose you are making a line-follower robot:

- Consider two types of K_p...

 - **Low K_p** – Robot misses turn
 - **High K_p** – Overshoots and misses next line

Sharp Turn has no P-Controller Solution/
PD Control Example

- Problem: We want a really high Kp to reach desired output
- Issue: Robot Overshoots
- Using “D-controller” as Damper

$$u(t) = k_p e(t) + k_d \frac{d}{dt} e(t)$$
Solution: Use “D” on top of “P”
Complete PID Controller

\[u(t) = k_p e(t) + k_d \frac{d}{dt} e(t) + k_i \int e(t) \]

- **P** – Proportional (Spring) term to reach goal
- **I** – Integral term to remove residual error
- **D** – Derivative term to add damping
Complete PID Tuning

- Do this smartly.
- Start with only P. Increase P until it Oscillates
- Include D until the system is critically damped (no oscillation)
- Include I to remove residual

For more tips on PID tuning check:
Ziegler-Nichols Tuning Method

https://en.wikipedia.org/wiki/Ziegler%E2%80%93Nichols_method
Personal Tips/Suggestion

- Robot has inherent damping
 - Don’t bother with D

- Design with tolerances in mind
 - Don’t bother with I.
 - In most cases I is overkill for simple applications

- P-Control is good enough.

- Tune P controller using potentiometer (frob knob) as gain